
AD-A280 053 _______________

I~hh~~hhIComputer Scie*nce

Measuring Software Dependability by Robustness
Benchniarking

Arup Mukherjee Daniel P. Siewiorek

May 1994

I CMU-CS-94148

4v

DTI

",tooQ ELECTE'

S JUN 0 81994D1

94-17262
7 026

V

Measuring Software Dependability by Robustness
Benchmarking

Arup Mukherjee Daniel P. Siewiorek

May 1994
CMU-CS-94-148

"Accesion For

NTIS CRA&I
DTIC TAB
Unannounced 0
Justification

By .School of Computer Science
Distrbui ICarnegie Mellon T niversity
Distribution .Pittsburgh, PA 15213

Availability Codes ELECTE
Avail and/or JUN081994

Dist Special JUN

Inability to identify weaknesses or to quantify advancements in software system robustness fre-
quently hinders the development of robust software systems. Efforts have been made to develop
benchmarks of software robustness to address this problem, but they all suffer from significant
shortcomings. This paper presents the various features that are desirable in a benchmark of system
robustness, and evaluates some existing benchmarks according to these features. A new hierarchi-
cally structured approach to building robustness benchmarks, which overcomes many deficiencies
of past efforts, is also presented. This approach has been applied to building a hierarchically
structured benchmark that tests part of the Unix file and virtual memory systems. The resul-
tant benchmark has successfully been used to identify new response class stuctures that were not
detected in a similar situation by other less organized techniques.

This research was supported in part by the Computer Sciences Corporation under contract number
G.S.09K90BHD0001LFP and by the Office of Naval Research under contract number N00014-91-J-4139. The views
and conclusions contained in this document are those of the authors and should not be interpreted as representing
official policies, either expressed or implied, of CSC or ONR.

Keywords: system reliability, software dependability, robustness benchmarking, test suite
organization, object-oriented benchmarks, software validation, extensible benchmarks.

1. Introduction

Given the current scarcity of tools to measure the robustness of a software system, operating
system developers lack the means to focus their attention on issues affecting system robustness.
System developers have long used suites of performance tests to aid in the development of high
performance machines and application programs; we believe that a suite of robustness tests would
be similarly useful in gauging the development of robust systems, and in providing a means to
compare robustness among various systems. Throughout this paper many examples are presented
in the context of evaluating the robustness of an operating system. However, most of the issues
examined arise in evaluating the robustness of any complex software system.

A robustness benchmark is a suite of robustness tests, or stimuli. The benchmark should address
issues that are general enough to apply to a wide range of systems yet specific enough to provide a
basis for differentiation according to system robustness. Essentially, a robustness benchmark aims
to stimulate the system in ways that are likely to trigger internal errors, and thereby to expose
design errors in the error detection or recovery mechanisms. Differentiation amongst systems should
reflect the number of such errors uncovered.

In attempting to design a useful benchmark with the most general applicability, several issues
must be considered. For example, if a benchmark simulates memory faults via fault injection into
the supervisor code of an operating system (as in [Kanawati92] or [Kao93]), it is not likely to be
easily portable between operating systems, perhaps not even between operating systems that are
very similar from an application's point of view - similar operating system interfaces are often
backed by very different bodies of code. This makes it very difficult to inject faults into supervisor
code in such a way that the results can meaningfully be compared across systems. This paper
documents several goals that a benchmark of robustness should strive to achieve. Those goals are
considered in light of the constraints presented by Unix-like operating systems. We then present
the choices we have made in our initial efforts to develop a suite of robustness tests for machines
running a Unix-like operating system.

After Section 2 describes the motivation for robustness benchmarking, Section 3 presents sev-
eral characteristics that a benchmark of robustness should attempt to achieve on any computer
system. Section 4 subsequently examines constraints and opportunites that arise in the design of
a benchmark to be used solely in evaluating the robustness of Unix-like systems. Later document
initial efforts into the development of robustness benchmarks and evaluate them as examples of
some of the design philosophies presented herein.

2. Background and Motivation

The development of computer systems has traditionally been motivated by the desire to achieve
higher performance. The need to measure progress towards this goal prompted the development of

performance benchmarks, which have grown in complexity and sophistication since their inception.
The original performance measures of a computer system reflected attempts to compute the aver-
age instruction execution time of that system. Later, focus shifted to attempts to measure overall
system performance in scenarios designed to reflect common uses of the system. The latter ap-
proach led first to synthetic benchmarks, such as Whetstone[Curnow76] and Dhrystone(Weicker84],
and then to applications oriented benchmarks such as the SPEC[SPECg0] suite, which measures

performance under prototypical workloads built from a collection of real applications. Similarly,
the advent of reliable computing systems is spurring the development of robustness benchmarks
to quantify improvements in system reliability. As robustness benchmarking grows, its focus is
also shifting from simple measures of hardware characteristics to measures that reflect the overall
reliability of a computing environment (i.e. the hardware together with its supporting software).

To date, much of the effort in building robust systems has been devoted to building robust hard-
ware. Efforts to evaluate the robustness of software systems have become common only recently,
and are exemplified by such studies as [Miller90] and [Suh93]. These studies both concentrate,
like all robustness benchmarks, on studying the behavior produced when a system is subjected to
unusual (rather than common-case) stimuli. Both studies perform their evaluations via a collection
of isolated tests, and draw conclusions from the collected results. Unfortunately, it is often difficult
to evaluate the relative significance of each of the individual results collected through such test
suites.

For example, [Miller90] examines the behavior of Unix utilities when they are supplied with
randomly generated input data. The crash of any single utility must be taken as seriously as
the crash of any other utility, even though this weighting may not reflect reality, because the
benchmark lacks knowledge of the underlying system's structure (so it cannot know if two utilities
are related in any way). Thus, if several utilities crash due to a bug in an underlying shared system
library, the robustness of the system being measured might be perceived to be unduly low - the
robustness benchmark is affected by a lack of knowledge of the system's structure. [Miller90] and
other such studies are similar to synthetic benchmarks in the performance arena - The validity of
these benchmarks depends on the accuracy with which they are constructed to emulate the normal
workload of the system. In the case of robustness tests, emulating the "normal workload" refers
to maintaining the same frequency distribution of exception conditions that occurs in the system's
normal use. This distribution must be maintained to obtain an accurate assessment of the system's
robustness when in normal use.

In order to allow more accurate evaluations of overall system robustness, robustness benchmarks
must evolve towards a structure that embodies the dependency hierarchy of the system. Bench-
marks should allow testing at multiple levels of abstraction, in order to facilitate the isolation
of sources of failures, and to help evaluate the severity of any failures encountered. Robustness
benchmarks should also be easy to adapt to any new facilities added to an existing system. For
example, if a module is added to a software system and is conceptually similar to an older module,
test procedures developed for the older module should be easily adaptable to the new module to
ensure that such expertise is not lost. Present suites of robustness tests do not address these issues.
In this paper we consider how these goals may be achieved without precluding any of the desirable
properties found in existing benchmarks of robustness.

3. General Design Issues

Several issues must be addressed by the designer of any suite of robustness benchmarks. This section
presents many desirable properties and mentions tradeoffs which may be necessary to attain them.

Portability: First and foremost, it must be possible to use the robustness benchmarks to com-

pare different operating environments and computer systems, and thus the benchmarks should be

2

portable across platforms. This goal often restricts the range of tests that can be performed -

notably those that require knowledge specific to one environment, such as is often the case with
fault-injection based tests.

Coverage: Ideally, a benchmark should test all possible uses of every system module being tested.
Often, however, the space of such stimuli is too large to permit exhaustive testing. A completely
deterministic benchmark may choose to test only the most frequent uses of a module, but experi-
ence shows that the common case uses are most often those that are properly debugged. Such a
benchmark functions solely as a verification suite. Alternatively, a deterministic benchmark may
focus solely on unusual uses of a module, thereby providing a better assessment of the robustness
of that module. However, problems usually occur at the intersections of rarely occurring events
which, taken together, produce an unexpected state. The set of possible event intersections is often
too large to explore systematically. Thus, such a benchmark remains limited in its coverage, and
is likely to be useful mainly as an aide to debugging the uncommon cases.

A more realistic estimate of the robustness can be obtained by the use of randomized stimulation.

Randomness: Randomized stimulation attempts to uniformly cover the space of possible uses of
a module - randomized tests usually have a higher serendipity (i.e. ability to uncover previously
unknown errors) than their deterministic counterparts. Note, however, that the nondeterminism in-
troduced by randomized stimulation may lead to loss of repeatability. Sometimes randomized stim-
ulation is required in order to adequately emulate a system's computational model, as is explained
in the next section. Some degree of randomness without loss of repeatability is one motivation for
an extensible set of benchmarks.

Extensibility: An extensible benchmark provides a means to extend its set of stimuli in a con-
sistent manner, i.e. stimuli can be added to the benchmark in such a way that produces results
that are directly comparable with results generated prior to the addition. Extensibility is necessary
not only to allow for the addition of stimuli of a different nature to be used in testing an existing
system module, but also to allow for an existing benchmark to be extended to apply to new system
modules. Extensibility ensures that a benchmark is a consistent measure of progress, rather than
simply a verification suite for an isolated module.

A simple form of extensibility can be achieved through the use of parameterized stimuli. For
example, a benchmark suite might consist of a group of stimuli whose behavior is completely de-
termined by the input of a string of random numbers. New sets of tests can be generated (thereby
increasing coverage) by varying the input string, whereas every test set generated maintains re-
peatability. The extensibility of such a benchmark is rather restricted, however, as only limited
variation can be achieved in tests by varying only input parameters. Greater extensibility requires
the ability to add completely new testing code while maintaining the consistency of the result
processing.

In general, the extensibilty of a benchmark is determined by the degree to which the test control
structure of the benchmark can be extended without affecting the result processing. Hierarchically
structured benchmarks provide a general means of achieving extensibility.

3

Hierarchy of Complexity: The tests within a set of benchmarks should be organized in order
of increasing complexity, where complexity is inversely proportional to the number of modules that
can be exercised by a test. The simplest tests are often applicable across multiple system modules
(e.g., there are tests of proper resource allocation and deallocation that are applicable to any system
module that manages a resource), whereas the most complicated tests are usually highly specific
to a particular module or combination of modules. This organization may be reflected in the
tests themselves, such that the most complicated tests can assume that all simpler tests have been
passed. In designing a benchmark suite that tests several system modules, it may be desirable to
develop a hierarchical interface to those system modules, organized to reflect the hierarchy of their
functions - simple tests can then be written in an object-oriented fashion without requiring code
duplication (possibly leading to divergence) on a per-module basis. An example of this approach
to benchmarking is documented in Section 5.4.

Note that an arrangement of tests in a hierarchy of complexity may lead to a higher initial
implementation cost - Some effort is required to define the structure of such a benchmark, unlike
the construction of a benchmark composed of a collection of ad hoc tests. However, this initial
investment is usually worthwhile due to the desirable properties of a hierarchical structure such as
the resultant ease of code reuse when the benchmark is extended.

Reporting of Results: Several characteristics are desirable in the results reported by each test
of robustness. As mentioned before, each test result should be repeatable. The results should also
be amenable to comparisons between different machines - indeed, rather than simply indicating
whether each test of robustness was passed or not, it is desirable to report on failed tests using a
scale that reflects the severity of the failure. A closely related issue is the amount of localization
of triggering events [Sullivan9l] that is reflectee in the reported results - i.e. the extent to which
the results pinpoint the error(s) that were detected, and their possible causes. Good localization
is especially valuable to system designers trying to focus on improving the depenability of the
operating system.

Note that detection of a "failure" (i.e. failed test) in itself raises a number of difficulties. As many
stimuli exercise the system in ways that may not have been anticipated by its creators, a "golden
standard" for correctness is often absent. The developers of a robustness benchmark might choose
to overcome this problem by defining a standard of correctness, or even a measure of incorrectness.
For example, a scale ranking errors in terms of their severity, ranging from unanticipated error
code returns to complete system crashes, could serve as a yardstick of incorrectness. Alternatively,
the benchmark itself could be augmented with the ability to learn and record a "correct" result.
For example, the developers of a benchmark may define the correct result to be the result most
commonly produced in a particular abnormal scenario' - The benchmark itself can then be used to
determine the most common results. A third possible approach involves defining only the possible
"incorrect" results, and assuming that anything else is correct. (For example, the effects of a system
call invoked with garbage parameters could be defined as being correct as long as the operating
system does not crash, the file system is left intact, and other executing processes are unaffected.)

A benchmark suite may also elect to compute an "index of robustness" from the individual test
results. Such a result serves to provide a very high level means of comparing two machines, and
is generally a weighted average of the individual test results. The set of weights used generally

'Such an approach measures behavioral consistency of modules across the domain of the test.

4

reflects the perceived severity of each of the errors detected, and may depend upon the number of
system modules affected by the error, its likelihood of occurrence in daily operation, the range of
applications affected, the specific type of error involved, and whether the system was only able to
detect the error, or whether it detected and corrected the error.

4. Benchmarks for Unix-like Systems

Unix-like operating systems are available on a wide spectrum of hardware platforms ranging from
personal computers to supercomputers. As all of these operating systems attempt to provide
similar interfaces and functionality, benchmarks can be written for the purposes of comparing their
robustness. This section describes opportunities and limitations that constrain the development
of a benchmark suite designed specifically to test Unix-like operating systems. As such, most of
the issues raised are in addition to those presented in the previous section. Note that many other
multi-user multitasking timeshared operating systems present similar constraints; we attempt to
point out features of Unix that are relevant to robust benchmarking efforts, although most do not
restrict the applicability of the work to other non-Unix operating systems.

4.1. Goal of a Unix Benchmark

Unix-like operating systems are primarily used to support applications that require support for
multiple processes and multiple users. Even in "single user" setups, processes owned by at least
two different users are usually present on the system (processes owned by the system administrator,
and those owned by one or more users). The function of the operating system is to manage access
to hardware resources, and to ensure that the running processes do not affect each other adversely.
This suggests that the robustness of an operating system should reflect the system's ability to
successfully contain fault conditions generated by any one process (i.e. reflect the ability of the
operating system to prevent those faults from affecting other processes). Thus, a system crash is
considered to be the extreme case of failure to localize a fault, as it means that all other processes
are affected. A Unix benchmark suite should thus attempt to measure the ability of each module to
contain errors, on a module by module basis for each of the several testable modules and interfaces
existing on most systems.

4.2. Benchmark Structure

4.2.1. Gross Structure

Unix systems provide at least the following modules together with their interfaces: file system,
virtual memory, process management, and signal handling. Most also provide network support
and window management. A simple benchmark suite might consist of a series of independent test
programs, each of which exercises one module. However, such a test does not accurately reflect
the fact that under normal use, each system module must support simultaneous interaction with
several programs. Thus multithreading, or support for running and monitoring several simple
programs simultaneously, is required for a representative test of fault handling scenarios that may
arise in regular use. Note that a multithreaded benchmark is also able to test the system's ability

5

to handle the propagation of multiple faults simultaneously occurring in distinct modules. Thus,
a robustness benchmark for Unix-like systems should have multiple threads - a feature that also
proves convenient in measuring the extent to which a fault propagates (described later).

There is another disadvantage in designing a benchmark suite made up of one test program
per system module. A system may have several modules, and the incremental cost of adding a
new, widely applicable test to the test suite is high - the new test must be implemented once
for every module involved. However, if the new test simply manipulates modules in a manner
that can be abstracted beyond a standardized module interface, the test need only be coded once;
module-specific code below the interface handles all interaction with the system modules and is
unchanged. This is the motivation for hierarchical structuring of benchmarks. Unix systems
support enough modules to justify implementing a hierarchically structured system interface to
allow tests to be be coded in an object-oriented manner, without code duplication. (For an example
of such an implementation approach, see Section 5.4.) Note also that a hierarchical approach
enforces consistency of result reporting simply by eliminating multiple copies of functionally similar
testing and reporting code - each test is implemented exactly once at an abstract level, thereby
guaranteeing compatibility of test reports across modules.

Finally, it should be noted that portability considerations often require that the code of a bench-
mark suite be limited to a user-level implementation. Unix-like kernels often differ substantially in
their implementation. Had this not been the case there would presumably be little or no difference
in robustness among the various flavors of Unix. Thus any benchmark that requires kernel-level
support is not likely to be easily portable across a wide range of Unix platforms.

4.2.2. The Measurement of Faults

The following criteria might be used to evaluate the seriousness of a fault condition (in increasing
order of severity):

1. Does the fault affect the process causing it?2

2. Does the fault affect other executing processes?

3. Does the fault crash the operating system?

4. Does the fault crash the operating system microkernel?3

An uncontained fault may affect another executing process in one of several ways. It may
cause the other process to crash (without having crashed the entire operating system), to produce
incorrect output, or to simply to execute more slowly than it otherwise would. Note that the
process causing the fault may be affected in a similar manner; however, if the causing process is the
benchmark itself, the benchmark will not be able to detect the fault without the aid of an external
monitoring agent, such as a watchdog started before beginning the tests.

2In practice, this measure is limited by a benchmark's ability to detect changes made to its own state.

'Of course, this applies only to systems that are built on top of a microkernel.

6

Barton Cristian Suh

Response too late Timing (early/late) Timeout (late response)

Invalid Output Response (value/state) Failure (incorrect answer)

Crash Crash (partial/total amnesia, pause, halt) Crash

Task stop (process crash) Abort (crash w/ error message)

Table 1: A comparison of failure classifications.

The possible effects of a fault may be classified according to any of several taxonomies, such
as those of [Barton90], [Cristian9l], or [Suh93], which are summarized in Table 1. All of these
taxonomies necessitate a means of measuring the effect on processes other than those owned by
the benchmark itself. This may be done by observing a "sacrificial program" which is executed
concurrently with the benchmark suite, and checking to see how it is affected by the faults generated
by the benchmark suite. Note that almost all of the possible resultant states of the sacrificial
program (as enumerated by Table 1) can be detected mechanically by a "watchdog" program that
has been previously calibrated to the expected behavior of the sacrificial program. If the fault
should produce a complete system crash, however, the watchdog may be unable to observe this
fact, unless it is executing on a separate processor that is isolated from the one used to execute the
tests. If a separate processor is not available human intervention may be required in the event of
a system crash.

A sacrificial program should, of course, make widespread use of the system to increase the
probability that it will reflect any effects of uncontained faults. A robustness benchmark suite
might elect to provide a synthetic program to serve as a sacrificial program, or it may choese to
make use of any of several performance benchmark suites, such as the SPECmarks, which have
the advantage of widespread availability. If a system is being evaluated for its ability to run one
particular application without failure, that application itself might well serve as the sacrificial
program.

It should be pointed out that the use of a sacrificial program has a marked effect on some of
the propertes of the benchmark. In particular, any robustness benchmark employing a sacrificial
workload is a multithreaded benchmark and as such suffers all the disadvantages of being mul-
tithreaded (e.g. the resultant benchmark is likely to lose both determinism and repeatability).
However, as mentioned earlier, multithreading is also more representative of the application com-
puting model supported by the operating system. The use of multithreading is discussed further
in a later section.

4.2.3. Recording of Results

Most Unix-like systems provide no stable data repository, so a robustness benchmark must imple-
ment a means of recording results in the face of adverse conditions produced by the testing. As
the possible effects of a test are often unknown, this can be rather difficult to implement. Any
buffered output channel is susceptible to data loss in an operating system crash; most of the output
channels available to a user-level process fall into this category. A simple but non-automated way

7

to overcome this problem involves printing results to an unbuffered CRT or printer port monitored
by a human. A similar effect might also be achieved through the use of an unbuffered serial line
output to communicate results to a second "watchdog" processor. If a serial line is not available,
the same arrangement, with a greater chance of losing a small amount of data, can be approximated
by communicating results to a second computer over a local area network. In the last case, logging
with variable granularity (i.e. if a test causes a crash, the test is repeated while synchronously
writing the log to disk more frequently than before) may help to reduce the amount of data loss.,
although it cannot completely overcome the effects of data buffering by the kernel.

4.2.4. Randomness and Extensibility

In order to provide good coverage of the test space, a robustness benchmark may opt to use tests
whose behavior is dependent upon the output of a random number generator. However, such a
test may not execute exactly the same actions on different systems if the output of the random
number generator changes. Most Unix systems provide a random number generator interface
(randomo) that is identical across implementations, but which is not guaranteed to produce exactly
the same stream of random numbers from machine to machine 4. This brings into question the value
of comparing randomized runs made on two different machines, a problem that can be resolved
through "controlled randomness" whereby streams of random numbers are pregenerated and stored
in a file in advance. These pregenerated numbers are then fed to the benchmark at run time,
thereby ensuring that benchmark runs on two different machines behave in a manner determined
by identical sets of random numbers. Note that the Unix random number generator produces the
same stream of random numbers from run to run on any given machine (for a given seed) and thus
does not affect repeatability of results on a single machine.

Nevertheless, repeatability is often difficult to achieve in any realistic robustness benchmark
of a Unix system because Unix systems do not usually provide deterministic process schedulers.
Thus, any test that presents the system with a multithreaded workload (in order to evaluate the
system's ability to handle multiple simultaneous requests) will introduce some randomness into
the result of the robustness test. Consequently, the results of any such test may not always be
repeatable, as the scheduling order is likely to vary from run to run. This problem cannot usually
be resolved in a portable manner if a robustness suite wants to test a multitasking environment.
Unfortunately, Unix schedulers do not normally provide hooks to allow repeatable or deterministic
process scheduling. A multithreaded benchmark scheduling its own threads may reduce the severity
of this problem, but does not provide a complete solution because the benchmark as a whole remains
subject to the scheduling actions of the system-wide schedulcr.

4.3. Summary

Unix environments provide a level of programming support adequate for benchmarks ranging from
simple tests based on the perturbation of an input string to more complex hierarchical tests which
are extensible at both abstract and module-specific levels. When the requirements of robustness
benchmarks are better understood, Unix may well provide a testbed for the development of a

4in practice, most implementations do produce identical streams, but a system vendor might choose to change
this.

8

Portability Coverage Extensibility Consistency Initial Localization Repeatability
of results imple- of

menta- triggering
tion events

Randomness x ft x x,4 x x,4 f

Multithreading x f, x xt x x jf

Hierarchical structure x x ft f t x x

Logging x x x x ft ft x

Kernel fault injection 1$ ft x x ft x

Table 2: The effects of implementation choices on benchmark characteristics. Postive correlation,
inverse correlation, and independence are indicated by ft, 4, and xrespectively. Where more than
one relationship is indicated, the actual relationship depends on the specific implementation.

crashme CMII crashme Modular Hierarchical

Portability Unix Unix Similar modules Similar modules
(similar implementations (similar abstractions)

only)

Coverage High System calls Variable/Local to module Variable

Serendipity High High/Limited to syscalls Variable/Local to module Variable

Extensibility None None Difficult Easy

Localization None Possible (via sentries) High High

Repeatability Low Low Variable Variable

Table 3: The properties of various example benchmarks. Properties marked "variable" are uncon-
strained by the design of the benchmark, and vary between the individual tests in the benchmark.

language in which robustness tests can be expressed with minimal effort. At present, Unix envi-
ronments provide modular interfaces which are can be organized into a hierarchy. This permits
hierarchically organized benchmarks, from which new benchmarks can be derived with only a small
amount of effort via inheritance. An initial approach to such an implementation is described in
Section 5.4.

Table 2 summarizes the relationships between the properties of a benchmark and the implemen-
tation choices made while constructing it. As can be seen from the table, these implementation
choices affect most of the important characteristics of any robustness benchmark. The next section
provides several examples of benchmarks exhibiting the tabulated relationships.

5. Some Examples of Robustness Benchmarks

This section presents initial efforts in producing benchmarks of system robustness. Each example
is evaluated with respect to the design issues presented in Section 3. The properties of all the

9

Hardware Operating System Time to Crash

(approx)

IBM/RT Mach 2.5 3 sec

IBM/RT Mach 2.6 60 sec

i486 Mach 2.5 5 sec

i486 Mach 3.0 (MK76) 4 sec

iA86 Mach 3.0 (MK82) 50 sec

Table 4: Time taken by crasbme to crash some machines.

benchmarks are summarized in Table 3 and are described in more detail below.

5.1. "Crashme"

Crashme is a simple, publicly available test of robustness for Unix systems. This program
allocates an array, and fills this array with random data. Subsequently it spawns off several
child processes that all try to execute this array of data as if it were code. The parent crashme
process observes its children and spawns replacements for the children as they take exceptions
and die. When crashme is run, the Unix system is subjected to a large number of varied exception
conditions in a short period of time - as a result both the error detection and handling capabilities
of the operating system are severely tested. Crashme succeeds in crashing a large number of Unix
systems. Albeit from a very small sample of machines, we observed that the amount of time
an operating system stayed up under crashme appears to be correlated to some degree with our
observed reliability of that operating system in day to day use. (Refer to Table 4.)

Crashme is a very good test of a system's ability to handle a high error rate, but in many ways
it is not a good general purpose benchmark of robustness. Although it is portable and has good
coverage of the stimuius space (and a correspondingly high serendipity), the results from crashme
are very limited - either the system crashes, or it does not crash. If the system crashes, it is very
difficult to determine the cause of the crash (and any such determination could only be a result of
error logging external tc crashme itself, such as error logging provided by the operating system).
Crashme also lacks repeatability - a high degree of randomness is introduced due to the scheduling
of a large number of child processes created by the program. If the test is run twice, and the system
crashes both times, it cannot be determined whether or not both crashes shared a common cause.
Due to the difficulty of interpreting its results, crashme is only of limited usefulness as a measure
of progress in building a robust system.

5.2. CMU Crashme

Having observed the aforementioned problems with crashme, we attempted to remedy them
by restricting the coverage of the test, hoping to gain repeatability and better localization of
triggering events. The spawned child processes were constrained to exercising only a single well-

10

Hardware Operating System Time to Crash

(approx)

IBM/RT Mach 2.5 30 sec

IBM/RT Mach 2.6 no crash

i486 Mach 2.5 no crash

i486 Mach 3.0 (MK76) 10 sec

i486 Mach 3.0 (MK82) no crash*

* became unusably sluggish after 30 secs

Table 5: Time taken by CKU crashme to crash some machines

defined system interface - namely, the Unix system calls. It was anticipated that the error checking
on parameters passed to system calls would be sufficient to guarantee that system calls made with
randomly generated parameters would not be able to crash the operating system. Much to our
surprise, many of the systems tested were vulnerable to this limited test. (Refer to Table 5.)

Although this modified version of crashme still exhibits a high degree of nondeterminism, it
offers better localization of triggering events than the original version. This localization can be
further improved by restricting the tests to only a subset of the Unix system calls. Such restriction,
together with the monitoring of system calls via the sentry mechanism described in [Russinovich92],
has been used successfully to identify some errors in the Mach 3.0 Unix server.

5.3. Modular Benchmarks

Another approach is that of modular benchmarking. Modular benchmarks are separate tests of
individual system modules. These benchmarks are constructed by regarding the system as a collec-
tion of isolated modules, and writing one or more tests to exercise each module independently. One
example of a modular benchmark is documented in [Suh93]. Another example is a set of robustness
benchmarks that was recently constructed at CMU to test the robustness of the Advanced Space-
borne Computer Module (ASCM)[Dingman93). Although this is an embedded system running a
real-time operating system not related to Unix, it can be regarded as a collection of system modules
in much the same way as any other operating system. The ASCM test suite consisted of distinct
tests to exercise the various system modules (file system, memory system, external communication,
locking support and multi-program operations) together with a watchdog program (similar to the
parent crashme process) to monitor and collect the results of the tests.

An example of a modular benchmark

The file module benchmark from the ASCM test suite serves as a good example of a modular test.
This benchmark stresses the seven calls of the file module (createf.ile, open.file, close-file,
delete.f ile, readf ile, write.file and movef ile.pointer) systematically, constructing tests

11

File Handles Buffer Addresses Number of Words

Closed Start of 16 byte buffer 1

Opened read-only Start of 256 byte buffer 16

Open read-write Middle of 256 byte buffer 256

Deleted End of 16 byte buffer 1024

Altered Beyond end of 16 byte buffer 4090

Allocated memory Null pointer 4100

Address of deleted buffer

(6 file handles x 7 data buffers x 6 sizes - 252 tests)

Table 6: The various possibilities for input parameters in the read..file and write-file tests.

Operation Number of Result Class

Tested Tests correct unexpected bad terminated warm cold
error success restart restart

read-fle 252 175 77 0 0 0 0

write-file 252 178 42 24 0 0 0

Table 7: The results of running the read.flile and write..file tests on an ASCM system
[Dingman93]. Each test case is classed as having produced the correct result (correct), hav-
ing returned an unexpected error code (unexpected error), having indicated success in spite of
having been given invalid input parameters (bad success), having caused the operating system
to terminate the benchmark (terminated), having caused a warm restart of the system (warm

restart), or having necessitated a cold restart of the system (cold restart).

for each call from the interface definition of that call. For example, the read..file call takes 3
parameters: a file handle, the starting address of a buffer into which data is to be read. and the
number of words to be read from the file. The benchmark chooses a value for each of the parameters
from a set of values that are based on the parameter's type. For example, a file handle might point
at a valid file that is closed, at a valid file that was opened in read-only mode, or at a deleted file,
among other possibilities. By choosing all possible test input combinations for all of the parameters
of the read-file call, the benchmark generates 252 test cases, as shown in Table 6.

The results of the 252 tests are then divided into six groups in increasing order of severity: those
that produced the expected result (correct); those that returned with an error code, but not one of
those that would be expected given the input parameters (unexpected error); those that returned
indicating success in spite of having been given invalid input parameters (bad success); those that
caused the operating system to terminate the benchmark (terminated); those that caused a warm
restart of the system (warm restart); and those that caused a cold restart of the system (cold
restart). The results of these 252 tests on the read..Iile and vrite..file calls, which take
identical sets of inputs (and thus generate the same test parameter combinations), are shown in
Table 7.

12

The advantages of the modular benchmarking approach include relatively low complexity of the
individual tests (because inter-module interactions are usually not considered), and the ability to
guarantee determinism. Unfortunately, modular benchmarks also have several disadvantages.

Although the modular benchmark approach applies well to hardware, where system components
are manufactured separately, and are often designed for independent testability, the approach
does not scale well to large bodies of operating systems software, whose modules are often closely
intertwined, making independent testing difficult. Here, this testing paradigm is not matched well
to the system being evaluated. A different problem may occur when a modularly written system,
seemingly well suited to modular testing, is evaluated. In this case, the modular decomposition
of the benchmark suite restricts the coverage of individual tests, and eliminates any possibility
of stimulating interactions between system modules. In addition, modular benchmarks are also
unable to take advantage of the similarities between system modules. While it is quite likely that
some similarities will exist between the many modules in a system, modular benchmarking requires
that any similar tests applicable to multiple modules be coded once for each applicable module in
the appropriate test. Thus, similarities between modules are hidden within the individual tests -

a significant loss, because such similarities are the key to extensibility, as explained in the next
section.

Modular benchmarks offer no guarantee that the results of simi)?- tests, or even of two different
revisions of the same test, are comparable with each other. In eft t, while all comparisons are
external to the benchmark (i.e. they are done by the human, or by an automated postprocessor,
who collects the results of the individual tests), all information determining their comparability
(the abstract nature of the tests) is completely hidden from the evaluator. This problem limits the
usefulness, as a measure of progress in the development of a system, of any modular benchmark
that goes beyond simple interface verification. For example, improvements to a system module
may render a modular benchmark incompatible with its test simply because implementation details
changed. The original test may still apply at an abstract level, but modular benchmarks enforce
no separation between the abstract test they apply and the interfacing of this test to the module
being tested. Consequently, a modular test often needs to be adapted in response to any significant
change in a module. When such an adaptation is made, great care must be taken if the results of
the adapted test are to remain directly comparable to results from the original version.

In order to illustrate the last point, consider the changes to a benchmark that might be necessi-
tated by an incompatible upgrade of a system module (e.g., the change from version 10 to version
11 of the X window system). The old and new versions of the module provide the same function-
ality, and thus any tests ,f the old system are applicable to the new module. However, part of any
benchmark code must be rewritten to accomodate the interface change. This rewriting involves
"module interface code" which interfaces the system module being tested to the benchmark's test
routines. If results of the updated benchmark are to remain comparable to those of the original
benchmark, care must be taken not to modify code other than the module interface code (e.g.,
code for purposes such as result gathering and processing should not be changed). As modular
benchmarks do not require separation of the module interface code and testing code, the necessary
modifications may be complex, and must be performed with great care.

13

5.4. A Hierarchical Approach

Given the shortcomings of modular benchmarks, it would seem that decomposition of a system
into multiple unrelated modules is not the best approach to organizing a suite of robustness tests.
Consider the following set of identical tests, taken from the ASCM benchmarking suite. These tests
appear in the benchmarks of both the file system and of the memory buffer system. <object> is
used to denote either a file or a memory buffer in the list:

"* Reference <object> before it has been created.

"* Reference <object> after is has been deleted.

"* Delete an active <object>.

"* Write past the end of <object>.

"* Read before the beginning of <object>.

"* Allocate <obj ect>s until resources are exhausted.

These tests represent just a few examples of stimuli that are applicable to multiple modules, but
are hidden within individual modular benchmarks. As a result, similar tests are being performed,
and their results are potentially comparable to one another, but this may not be apparent in the
results.

One way to remedy this problem is to abstract the tests and their associated result processing,
separating them from the implementation details of the various modules by a clearly defined in-
terface layer. However, this one-step decomposition is not sufficient, because it does not delineate
the range of applicability of any given test. Some tests may be applicable to all modules, while
others might only apply to a subset, etc. We believe that the correct way to decompose a software
system in order to test it is through the use of a class hierarchy. Once all of a system's features
are organized into a hierarchy of classes, a test can be specified to apply to one or more particular
classes. One possible class hierarchy that might be used to organize the testing of a Unix system
is shown in Figure 1.

Note that the modular ASCM benchmarks described earlier actually represent an example of a
simple hierarchy with only one level of abstraction. The ASCM benchmark generates tests for a
module by looking at the interface to that module - sets of test input parameters, selected so as
to be of the correct data types, are chosen for each call implemented by the module. For any input
parameter of a given type, there is a predetermined list of inputs that may be used to instantiate
that parameter. Thus, one can think of the interface to a call in a module as being a class inheriting
from a set of base classes, where each base class corresponds to one input parameter type. The
class corresponding to a particular call inherits from all of the input parameter types that describe
its arguments, and the test applicable to such a class is composition of tests applicable to each of
its base classes.

5.4.1. A proposed hierarchy

As the management of various resources is a primary function of any operating system, Figure

1 is one possible starting point in the construction of a benchmark of robustness. Note that the

14

(w~te.-mm~ Cbct

z~ooinmmcatie°

ha
Sto ag O e c hrpto n

singlesyste modulbutrather serv e d a StegfndmentaFl m seasofgupin odlsbysmlaiy

/I Le:l
S~COaMMication

X-Wi dow Nel

Figure 1: Part of one possible hierarchy. Abstract classes, representing abstractions, are in boldface,
while ordinary (nonabstract) classes, representing system modules or data types, are not.

hierarchy contains many abstract classes (e.g., Storage Object) which do not correspond to any
single system module, but rather serve as the fundamental means of grouping modules by similarity.

This explicit grouping is the basis for the organization of a hierarchically structured benchmark
suite. It also provides the mechanism for orderly extension of the benchmark suite.

In order to construct a hierarchical benchmark, a hierarchically structured interface to the oper-
ating system must first be implemented. Unix does not provide such an interface, so a hierarchical
interface library must be developed to support the subsequent construction of robustness tests. The
construction of such an interface proceeds as follows. Having decided upon the hierarchy to be im-
plemented, the designer must choose an appropriate set of methods to be defined in the interface to
each class. For example, the methods allocate and deallocate might be defined for the top-level
class Resource. Shared.Resource, which inherits from Resource might add the methods lock and
unlock to those already defined by Resource. Great care must be taken to define these methods
with sufficient generality to apply to all modules that will be their descendants. An instance of a
particular class (e.g. File) is required to implement all methods from all abstract classes that are
its ancestors. Whenever a method can be implemented in a completely module independent way,
it should be defined in the most general abstract class to which it applies. Subclasses and instances
of this class may chose to redefine the default implementation with a more specific one.

Note that operating systems of the future are likely to provide object-oriented hierarchical
interfaces to their facilities and will thereby eliminate the need to construct the interface library.
Note also that hierarchical interfaces and benchmarks are most easily written in a language that
supports object-oriented programming (such as C++), but can also be written in more traditional
languages (such as C) with some extra effort on the part of the programmer. The experimental
hierarchy has been written in C++.

5.4.2. Using a hierarchy to build a benchmark

Once a hierarchical interface to the operating system has been built, any operating system test
not requiring module-specific knowledge can be written in an abstract manner. The test should
be implemented at the most abstract possible level in the class hierarchy to which it applies For
example, a test of resource exhaustion by repeated allocation (mentioned in Section 5.4) requires

15

only an allocate method from the module that it is testing. As such, it should be coded to
take a parameter of class Resource, and to use the allocate method provided by all Resources.
Once the test has been coded for a particular class, it can automatically be applied to any of the
descendants of that class. In the case of the resource overallocation test, the test can be applied
to all of the system modules at the base of the hierarchy (including files and memory buffers). In
contrast, consider a test that checks for correct system behavior upon writing past the end of an
object. This test requires the notion that the object be able to store information, and that it have a
beginning and an end. In this case, the test applies to the class Storage-Object and its subclasses.

Once a test has been encoded at the appropriate level of abstraction, any result processing
associated with the test should be encoded at the same level. Thus the result processing is allowed
to have knowledge of the specificity of the test (e.g., it might want to use such knowledge to scale
the results of the test according to some weight assigned to the severity of a failure in that class).
Most importantly, however, both the test and the result processing for the test are coded exactly
once, in an abstract way. This guarantees comparability of the results obtained from applying the
test to multiple modules. Because exactly one copy of the test is used for its multiple applications,
there is no way for inconsistencies to arise, as might occur when multiple copies are present (e.g.,
with modular benchmarks).

Hierarchical benchmarks are also easily extensible in a consistent manner due to their organi-
zation. If the benchmark suite is to be extended to a include a new module, the interface to that
module is encoded as a subclass of the appropriate class within the hierarchical interface to the op-
erating system. If the new module is related in any way to existing modules, its placement reflects
these relationships. Any tests that have been developed for the existing modules can be applied
to the new module immediately. Again there is no possibility of duplicating test code if the new
module is positioned correctly in the hierarchy, and consistency in testing and result processing is
guaranteed to have been maintained across the extension.

Finally, note that while hierarchical structuring offers superior extensibility, reduction of coding
costs (through code reuse) and the potential for better organization of result reporting, it is not
antagonistic to achieving any of the other goals desirable in a benchmark (portability, coverage,
localization of triggering events, etc). Thus hierarchical benchmarks offer some special benefits
without sacrificing the desirable qualities offered by other benchmark styles.

5.4.3. Hierarchical testing using C++

Hierarchically structured benchmarks are most easily implemented in a language that provides
support for inheritance. This section presents some trivial tests that demonstrate the use of C++
in building a hierarchy, and in constructing tests using that hierarchy. The tests presented are
intended solely to illustrate the programming paradigm. Readers who are familiar with C++ may
wish to skip to the next section, which presents a more complicated example of a hierarchical test
which was actually implemented.

Given the hierarchy from Figure 1, the significant parts of a declaration of class Resource might

16

look as follows:

class Resource {
public:

virtual int allocate (nt n) =0;
virtual int deallocate (int id, int n) =0;

Resource is an abstract class (i.e. it does not correspond to any single system module), so the
implementations of methods allocate and deallocate are not provided, and are hence marked
"=0." The Storage-Object abstract class inherits from Resource, and supplies some additional
methods:

class Storage-Object : public Resource
public:

virtual void set-mode (object-mode mode);
virtual object-mode get-mode();
virtual int read-data (char *but, int len) =0;
virtual int write-data (char *but, int len) =0;

protected:
enum objectmode mode-spec; // mode of object

The Storage.object class provides two more methods (read-data and write-data) that will
be implemented by classes inheriting from it. Default implementations are also provided of two
methods that manage the mode of the storage object. Classes inheriting from Storage_0bj ect may
override the definitions of set-.mode and get.mode if they so desire, as these methods are declared
as being virtual. Finally, the file.object class is declared as follows:

class fileoobject: public Storage-Object {
public:

// Resource methods
int allocate (int n);
int deallocate (int id, int n);

// Storage-Object methods.
void set-node (objectmode mode);
int read-data (char *but, int length);
int write-data (char *but, int length);

(. ..

The file.object class must implement all of the unimplemented methods that it has inherited
from its ancestors. It also chooses to override the default implementation of set.mode, replacing it
with an enhanced version that manipulates the mode bits of the underlying file on disk, and then
calls the original default implementation.

17

Having declared and implemented all the methods of the hierarchical interface, a simple test,
applicable to any Resource might be implemented as follows:

void resource-test(Resource *r)
{

for (;;)
// keep allocating forever
r->allocate(1);

}
}

This test attempts to exhaust the supply of a Resource in the hopes of stimulating anomalous
behavior. Similarly, a more specific test, applicable only to Storagenbjects, might attempt to
stimulate error conditions by writing unusually large segments of data:

void storage.obj-test(StorageObject *s)

// write out a big data block
s->write_data(but, 99*1O04*1024);

}

Finally, the two tests can then be applied to objects of the appropriate types:

file-object f;
process-object p;

saino

refource-test (ap);
resource-test (&f);
storage.obj.test (kif);

}

The resource test can be applied to both the file-object and the process-object, but the
storage object test is only applicable to the file.object, because the process-object is not a
Storage-object.

5.4.4. An example hierarchical test

As a simple illustration of a hierarchical benchmark, the hierarchical analog to part of the ASCM
benchmark was constructed for a Unix system. Observe that the read-Iile and write.lile tests
described in Section 5.3 require only those capabilities that are defined by the class Storage.Dbj act.
The hierarchical Unix benchmark implements these as tests of the StorageObject class, making
use of the read.data and write-data methods respectively. The file-object and meaory-object
classes, which are defined in our hierarchical interface library as subclasses of Storage-Object,
were evaluated using this benchmark.

18

Test-specific analysis

Module-specific analysis correct unexpected-error unexpected-teruinat ion bad.success

correct correct correct correct bad.success

unexpected-error correct unexpected.error <impossible> unexpected.error

unexpected.terminat ion correct <impossible> unexpected-terminat ion <impossible>

bad-success bad-success unexpectederror <impossible> bad.success

Table 8: A matrix showing how the module-specific and test-specific analyses of a test result
are combined to determine the ultimate classification of that result. The categories correct,
unexpected-error and bad.success correspond to the ASCM result classes with similar names,
while the unexpected-termination class supersedes the ASCM terminated class. The derivation

of this matrix is discussed at length in the text.

Implementation: Both the read-data and the write-data benchmarks are composed of two
parts. The first part generates the objects (i.e. file-objects or memory-objects) which are used

in the testing. This part embodies module-specific knowledge, as it must know at least the data
type of the object to be generated, and may need to know the internal details of the object being

generated. For example, it may need to know that an object encapsulating a closed file is required.
The second part of the benchmark embodies the abstracted test routine itself. This part of the test

is usually written at the highest possible level of abstraction, and does not embody any module-
specific knowledge. For example, the read-data and vrite-data tests are written to apply to any
Storage.-bject, and do not require further knowledge of the object they are testing. Thus, the

code for testing a file-obj ect looks like:

for i = 1 to nu-_test-objects {
Storage-Object obj;
obj = file-test-lib: :get._testobj (i);

test-storage.object (obj);

The routine test storage.obj ect can be applied to any storage object, such as a file or a piece
of virtual memory. In this particular case, it conducts tests of reading and writing using all possible
combinations of test buffer addresses and I/0 request sizes. On the other hand, get.test._obj () is
a module-dependent routine, implemented by each of the modules tested, that makes use of local
module-specific knowledge to generate the objects to be tested. In the example shown, it returns a
file.obj ect, which is passed to test..storage.obj ect and treated like any other Storage-fbj ect.

Result processing: The hierarchical benchmark implemented maintains the six result classifi-

cations defined by the ASCM modular benchmark with a seemingly slight, but important, change.
The ASCM error class terminated has been replaced by an unexpected-termination class, and
terminations that are the expected outcome of a test are instead counted as correct. The reason

for this change is discussed later.

The structure of the result processing code resembles that of the testing code in that test results

19

are also processed by a module-dependent and a module-independent routine. A module-specific
analysis routine is supplied by each module being tested, and evaluates the outcome of the test in
view of the characteristics of the particular object that was tested. In a system without a system-
wide integrated error handler, the module-specific routine is also able to examine module-specific
error return mechanisms and incorporate their feedback into its analysis. Unlike the module-
specific routine, the module-independent routine, also known as the test-specific routine, has no
detailed knowledge of the object being tested, but has detailed knowledge only about the test that
was applied. It is aware of the tested object only at the same level of abstraction as the test
itself was. The test-specific routine i3 applicable across all modules that are tested. It evaluates
outcomes based on system-wide error handling information, and on the observed behavior of the
tested object. Note that some information may be available to both result-processing routines, and
should be used by both of them in analyzing the outcome of the test.

Given the goal of classifying test results into one of the six classes described above, the two anal-
ysis routines each return correct, unexpected-error, unexpected-terminat ion, or bad-success.
These evaluations correspond to the first four possible result classifications respectively. The
module-specific and test-specific evaluations are then combined to yield the final classification of
the outcome, which falls into one of these four classes. In situations where either of the remaining
two possible outcomes (warm..restart or cold-restart) occur, the occurrence is detected by an
external monitoring agent (such as a human). In these two cases, the outcome is indisputable, and
no further module-specific or test-specific analysis need be performed.

Consider, for example, a write.data test which attempts to write 1024 bytes of data to a
StoragelDbj ect that encapsulates a closed file, passing in a buffer that points to only 256 bytes
of data. After the test has run, it is the job of the module-specific routine, which is aware of the
internal details of the Storage.-bject, to check whether the result indicates an invalid attempt to
write to a closed file, as the module-specific routine is aware that the file object being written was
actually closed. If the error code returned agrees with this predicted outcome, the module-specific
routine indicates a correct return. Otherwise, it indicates bad-success or unexpected-error, as
appropriate. The module-independent routine, on the other hand, is aware only of dealing with a
Storage-flbject, but knows that the test attempted to write more data than was actually supplied
to the write.data call. It therefore checks to see how much data the test claimed to have written
successfully, and once again classifies the outcome as being in one of the four aforementioned
categories. The two evaluations are then combined according to the following principles, which are
employed to produce the matrix of Table 8:

"* If a call succeeds (i.e. didn't return an error code), both result analyses must agree that success
was the expected outcome in order for the result to be deemed correct. This is because an
error stimulus can be introduced into the test by either the module-specific object generation,
or by the abstract test code initialization, without the knowledge of the other. Thus, if either
one of the analyses expects an error as the correct outcome, the correct outcome must be an
error, e.g., if write-data is called on a file that is open for writing, but is passed a NULL
buffer and asked to write 1024 bytes, only the test-specific routine will predict an error as
being the correct outcome. (This is because the decision to use a NULL buffer would have
been made by the test-specific initialization code.) If executing this test does not trigger an
error as predicted, the outcome is correctly classified as a bad-success.

"* Conversely, if a call fails with an error, only one of the analyses need accept this error as the
correct outcome in order for the result to be deemed correct. Once again, this is because

20

it is possible (and likely) that only one of the two parts of the testing code is aware of a
stimulus that is expected to cause an error condition. In the example above, suppose the
call failed, and that the return code indicated that invalid data had been passed to the
write-data call. Only the module-independent routine would have sufficient information to
classify this as being the correct outcome. To the module-dependent independent routine,
knowing only that a valid storage object was being written to, the error return would look
like an unexpected-error return.

" If a call produces a termination, only one result analysis need accept this termination as being
correct (i.e. expected) in order for the outcome to be considered correct. The justification
for this case is analogous to that of handling the failure of a call.

" The occurrence of an unexpected.termination precludes the possibility of an
unexpected-error or a bad-success. The analysis routines may not disagree on whether or
not the benchmark was terminated.

"* The analysis routines may disagree on whether a call failed or not. This may seem counter-
intuitive, and should not be a common occurrence. However, it may occur in the presence
of error return channels5 that are not available to both analyses for examination. For exam-
ple, a module-specific error-return channel might indicate to only the module-specific routine
that a test had failed. Alternatively, the test-specific routine might conclude that a test
had failed by observing behavioral data not available to the module-specific routine. In
cases of such disagreement, one analysis may return a bad-success while the other returns
unexpected-error. The correct combination of these two results yields unexpected-error
because the analysis that detected an error had error indication channels available to it that
were not available to the routine that did not indicate an error.

Note that the analysis routines in this implementation observe and analyze test termination by
the operating system. This is done in order to classify each termination as having been correct
or having been an unexpected-termination. Had the original ASCM classification been retained,
classifying terminations in a group unto themselves, benchmark termination would not have re-
quired further analysis; terminations could simply have been monitored and handled in the same
way as cold restarts or warm restarts. However, the implementation of the hierarchical bench-
mark exposed a problem with the ASCM result classification that renders this simpler scheme
unusable.

The hierarchical benchmark was initially implemented and run on a file.object module inter-
facing to part of a Mach 3.0 filesystem. With minimal effort (restricted to extending the hierarchical
OS interface library), the same test was later run on a memory-object module, interfacing to the
virtual memory system. The results of running the benchmark are shown in Table 9.

These results serve to demonstrate one of the valuable benefits of hierarchical testing, namely
that of enforcing consistency across modules in result processing, which is especially valuable when
a benchmark is extended. The hierarchical benchmark had initially been implemented using the
ASCM result classification scheme, which works reasonably well in the context of file management,
because process termination is not the expected outcome of any file operation. However, process
termination is often the correct means of signalling an error in interactions with the virtual memory

'An error return channel is any means by which the operating system can indicate an error condition to an
application. Examples include return codes, global status flags, signals and system traps.

21

Operation Number of Result Class

Tested Tests correct unexpected bad unexpected varm cold
error success termination restart restart

read-data (file-object) 210 108 (0) 0 57 45 0 0

write-data (f ile.object) 210 92 (0) 9 91 18 0 0

read-data (memory-object) 210 115 (99) 8 51 36 0 0

write-data (memory-object) 210 101 (93) 8 50 51 0 0

Table 9: Evaluation of the file-obj ect and memory.object modules using the hierarchical bench-
mark. The result classes used are those defined by the ASCM benchmark described in Section 5.3.
modified so that the terminated class has been replaced with a class containing only unexpected ter-
minations. Terminations which were the expected outcome of a test are counted as being correct.
The number of correct outcomes that were due to expected terminations is included in parenthe-
ses in the table, and represents the number of results that would have been misclassified by the
ASCM scheme.

system (e.g., as in the case of an attempt to reference an invalid address). When the benchmark
was extended to test memory-objects in addition to file-objects, the limitations of the ASCM
scheme became apparent; many otherwise correct outcomes were simply classified as terminated.
As can be seen from Table 9, the large numbers of test outcomes that are misclassified by the ASCM
scheme might lead to a conclusion that the virtual memory system was of very low quality. (Due
to the misclassifications, less than 10% of the tests would have appeared to have produced the
correct outcome.) However, further analysis revealed that the result classification system, and not
the virtual memory system, was at fault. This led to the modified result classifications, wherein
terminations are classed as either correct or unexpected-termination. The original shortcoming
of the result analysis was made obvious by the hierarchical structure of the benchmark, which
enforced comparability of the results across the two modules. A more ad hoc modular approach to
the problem might easily have obscured it.

In addition, it should be noted that this case study exemplifies one of the potential pitfalls of
robustness benchmark design - it is difficult to define error classes without knowing the outcomes
of all possible tests to which those classes may be applied. The ASCM benchmark, for example,
defined the terminated class in the absence of enough data to evaluate its suitability. The ASCM
evaluations of the file module (see Table 7) show no occurrences of terminated tests at all, and
only a few occurrences are reported for other modules that were similarly tested. In such cases,
hierarchical testing serves, by enforcing consistency in result processing, to maintain a "placeholder"
for result classes that are not well characterized. When more data on the vague classification become
available, the hierarchical framework serves as a guide towards correct characterization of this new
result class.

6. Conclusions and Future Work

In this paper, current robustness benchmark efforts have been examined. These approaches all fail
to address certain issues that are critical to the long-term success of a robustness test suite. Several

22

such issues have been delineated, and a proposed benchmarking organization that overcomes many
of these problems has been outlined. The proposed hierarchical benchmarking organization does
not adversely affect the desirable properties that have been attained by benchmarks to date. In
particular. the proposal imposes a hierarchical, extensible structure upon test suites: this structure
may mandate a higher initial implementation effort. but promises to improve the lifespan and
maintainability of any robustness benchmark that is in use for a long period of time.

There remain several opportunities for improvement that have not been explored in the dis-
cussion of an extensible hierarchy. For example, hierarchically structured testing facilitates the
combination of individual tests results into an overall -index of robustness". It also suggests a
system for determining the relative importance of each of the individual results. In addition, the
possibility of extending the hierarchical structure to include benchmarks that operate via fault in-
jection has not been explored, mainly because simple fault injection violates the notion that testing
procedures should be abstracted from the implementation details whenever possible. Thv possibil-
ity of reconciling this difference (via an abstracted form of fault injection) should be ,xplored.

Much of the work presented herein has been carried out in the context of measuring the robust-
ness of a Unix-like operating system. The kernel of the operating system has been regarded as an
opaque, monolithic entity. However, the advent of micro-kernel based operating systems presents
an opportunity for the lowest levels of such a hierarchical benchmark to focus on the robustness
of the layers beneath the operating system server - i.e. on the micro-kernel itself. Hierarchically
structured benchmarks can easily be extended to incorporate the notion of benchmarking one level
deeper (simply by adding one or more layers to the bottom of the benchmark hierarchy).

Finally, this approach to measuring robustness can be applied easily to any large software
system that was written in a modulai. manner. Such application promises the same extensibility.
low maintenance cost, and consistency that is obtained in a similar benchmark of operating system
robustness. The detailed investigation of such applications remains to be pursued.

23

References

[Barton90] J. H. Barton, E. W. Czeck, Z. Z. Segall, D. P. Siewiorek, "Fault Injection Exper-
iments Using FIAT," IEEE Transactions on Computers, Volume 39, Number 4.
April 1990, pp. 575-582.

[Cristian9l] F. Cristian, "Understanding fault-tolerant distributed systems," Communications
of the ACM, Volume 34, Number 2, February 1991, pp. 56-78.

[Curnow76] H. J. Curnow, B. A. Wichmann, "A Synthetic Benchmark," The Computer Jour-
nal, Volume 19, Number 1, 1976, pp. 43-49.

[Dingman93] C. Dingman, D. Siewiorek, "Measuring Robustness of a Fault Tolerant Aerospace
System," unpublished.

[Kanawati92] G. A. Kanawati, N. A. Kanawati, J. A. Abraham, "FERRARI: a .)ol for the
validation of system dependability properties," The 1992 IEEE Workshop on
Fault-Tolerant Parallel and Distributed Systems, Amherst, MA, USA, July 1992.

[Kao93] W.-I. Kao, R. K. Iyer, D. Tang, "FINE: A fault injection and monitoring envi-
ronment for tracing the UNIX system behavior under faults," IEEE Transactions
on Software Engineering, Volume 19, Number 11, November 1993, pp. 1105-18.

[Miller9O] B. P. Miller, L. Fredriksen, B. So, "An Empiri al Study of the Reliability of UNIX
Utilities," Communications of the ACM, Volume 33, Number 12, December 1990,
pp. 32-43.

[Russinovich92] M. E. Russinovich, Z. Segall, "Open System Fault Management: Fault Tolerant
MACH," Research Report # CMUCDS-92-,, CMU Research Center for Depend-
able Systems, Carnegie Mellon University, Pittsburgh, PA 15213-3890.

[SPEC90] Standard Performance Evaluation Corporation, SPEC Newsletter, Volume 2, Is-
sue 2, Spring 1990, Waterside Assoc, Freemont, CA.

[Suh93] B.-H. Suh, J. Hudak, D. Siewiorek, Z. Segall, "Development of a Benchmark to
Measure System Robustness," Fault Tolerant Computing Systems: Twenty-Third
International Symposium, Toulouse, Frane, June 1993.

[Sullivan9l] M. Sullivan, R. Chillarege, "Software Defects and their Impact on System Avail-
ability - A Study of Field Failures in Operating Systems," Fault Tolerant Com-
puting Systems: Twenty-First International Symposium, Montreal, Que., Canada,
June 1991.

[Weicker84] R. P. Weicker, "Dhrystone: A Synthetic Systems Programming Benchmark,"
Communications of the ACM, Volume 27, Number 10, October 1984, pp. 1013-
1030

[Weiderman90] N. Weiderman, "Hartstone: Synthetic Benchmark Requirements for Hard Real-
Time Applications," Ada Letters, Volume 10, Number 3, Winter 1990, pp. 126-36.

24

